Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tris(2-methyl-2-phenylpropyl)(pyridine-3-carboxylato)tin(IV)

The Sn atom of the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right]$, is four-coordinate and possesses a distorted tetrahedral geometry.

Comment

In several tris(2-methyl-2-phenylpropyl)tin carboxylates, such as tris(2-methyl-2-phenylpropyl)tin phenoxyacetate (Bao et al., 1998), acetate (Bomfim et al., 2002), arylcarboxylate with an organogermyl substituent (Fang et al., 2001) and bis[tris(2-methyl-2-phenylpropyl)tin(IV)] phthalate (Tian et al., 2005), the Sn atoms possess a tetrahedral geometry and do not associate into chain structures via carboxylate bridging, due to the effects of the bulky organic groups. In the title compound, (I), tetrahedral coordination is also observed (Fig. 1).

(I)

The $\mathrm{Sn} \cdots \mathrm{O} 2$ separation of 3.032 (1) \AA in (I) indicates that there is a weak interaction between these atoms, which distorts the tetrahedral geometry by opening up the C7$\mathrm{Sn} 1-\mathrm{C} 27$ angle to $119.94(9)^{\circ}$ and reducing the $\mathrm{O} 1-\mathrm{Sn} 1-$ C 17 angle to 93.64 (8) ${ }^{\circ}$. The bond dimensions around the Sn atom in (I) (Table 1) are similar to those found in the carboxylate structures mentioned above.

There are no intermolecular $\mathrm{Sn} \cdots \mathrm{N}$ interactions in the crystal structure of (I); such interactions are found in triphenyltin 3-pyridinecarboxylate (Ng et al., 1989) , tribenzyltin 3-pyridinecarboxylate (Yin et al., 2003) and tri(2fluorobenzyl)tin 3-pyridinecarboxylate (Yin et al., 2004).

Experimental

The title compound was synthesized by condensing bis[tri(2-phenyl-2-methylpropyl)tin] oxide ($1.05 \mathrm{~g}, 1 \mathrm{mmol}$) with 3-pyridinecarboxylic

Received 26 May 2005 Accepted 13 June 2005 Online 17 June 2005

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.030$
$w R$ factor $=0.079$
Data-to-parameter ratio $=19.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted. For phenyl group C11-C16, the minor disordered component has been omitted for clarity.
acid $(0.25 \mathrm{~g}, 2 \mathrm{mmol})$ in benzene $(50 \mathrm{ml})$. Water was removed with a Dean-Stark trap and the condensation was complete in about 5 h . The resulting clear solution was evaporated under vacuum. The white solid obtained, (I), was recrystallized from ethanol and crystals of (I) were obtained from cyclohexane by slow evaporation at 298 K (yield 73.5%, m.p. 348-349 K). Analysis, found: C 67.62, H 6.66, N 2.17\%; calculated for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{NO}_{2} \mathrm{Sn}$: C $67.51, \mathrm{H} 6.77, \mathrm{~N} 2.19 \%$. Spectroscopic analysis: IR (KBr disc): $v_{\mathrm{as}}(\mathrm{COO}) 1651, v_{\mathrm{s}}(\mathrm{COO}) 1339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): 9.10, $8.80,8.21,7.48$ (4 H , pyri-dine-H), 7.30-7.12 ($15 \mathrm{H}, m, 3 \mathrm{C}_{6} \mathrm{H}_{5}$), $1.29\left(6 \mathrm{H}, s, 3 \mathrm{CH}_{2} \mathrm{Sn}\right), 1.24$ $\left(18 \mathrm{H}, s, 6 \mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{Sn}$ NMR (111.9 MHz, $\mathrm{CDCl}_{3}, \delta$, p.p.m.): 104.7.

Crystal data

```
[Sn(\mp@subsup{\textrm{C}}{10}{}\mp@subsup{\textrm{H}}{13}{}\mp@subsup{)}{3}{}(\mp@subsup{\textrm{C}}{6}{}\mp@subsup{\textrm{H}}{4}{}\mp@subsup{\textrm{NO}}{2}{})]
Mr}=640.4
Monoclinic, P2 / /n
a=12.0660 (5) \AA
b=18.2275 (8) \AA
c=15.1284 (6) A
\beta=93.774 (1) }\mp@subsup{}{}{\circ
V=3320.0(2) \AA \AA
Z=4
```


Data collection

Bruker SMART APEX detector	7571 independent reflections
\quad diffractometer	6225 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.024$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-15 \rightarrow 15$
$T_{\min }=0.856, T_{\max }=0.889$	$k=-23 \rightarrow 23$
37665 measured reflections	$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0439 P)^{2} \\
&+0.4744 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.080$
$S=1.03$
7571 reflections
383 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Sn1-O1	$2.0836(15)$	$\mathrm{Sn} 1-\mathrm{C} 27$	$2.142(2)$
$\mathrm{Sn} 1-\mathrm{C} 17$	$2.141(2)$	$\mathrm{Sn} 1-\mathrm{C} 7$	$2.143(2)$
O1-Sn1-C17	$93.64(8)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 7$	$103.02(9)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 27$	$104.72(8)$	$\mathrm{C} 17-\mathrm{Sn} 1-\mathrm{C} 7$	$114.26(9)$
$\mathrm{C} 17-\mathrm{Sn} 1-\mathrm{C} 27$	$115.80(9)$	$\mathrm{C} 27-\mathrm{Sn} 1-\mathrm{C} 7$	$119.94(9)$

One phenyl group (C11-C16) is disordered over two positions; ipso atom C11 was refined with full occupancy, while the other atoms were refined in two parts, with site occupancy factors of 0.585 (8) (atoms $\mathrm{C} 12-\mathrm{C} 16$) and 0.415 (8) (atoms $\left.\mathrm{C} 12^{\prime}-\mathrm{C} 16^{\prime}\right)$. The phenyl rings were restrained to be planar regular hexagons, with target $\mathrm{C} \cdots \mathrm{C}$ distances of 1.38 (1) \AA. H atoms were placed in calculated positions and were included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms, $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms, and $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene H atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

References

Bao, M., He, Q.-L., Liu, B.-D., Xing, Y. \& Liu, Y.-H. (1998). Chin. J. Inorg. Chem. 14, 114-117.
Bomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, J. L. \& Wardell, S. M. S. V. (2002). Polyhedron, 21, 1667-1676.
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fang, X., Song, X. \& Xie, Q. (2001). J. Organomet. Chem. 619, 43-48
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ng, S. W., Kumar Das, V. G., van Meurs, F., Schagen, J. D. \& Straver, L. H. (1989). Acta Cryst. C45, 570-572.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tian, L.-J., Sun, Y.-X., Yang, M. \& Ng, S. W. (2005). Acta Cryst. E61, m74-m75.
Yin, H. D., Wang, C., Ma, C. \& Wang, D. (2004). J. Organomet. Chem. 689, 246251.

Yin, H.-D., Wang, C.-H., Ma, C.-L., Wang, Y. \& Fang, H.-X. (2003). Chin. J. Struct. Chem. 22, 211-214.

